
boar
Release 0.0.1

Alexandre Cameron

May 09, 2020

CONTENTS

1 Purpose 3

2 Installation 5

3 Practice 7

4 Usage 9

5 Reference 11
5.1 Documentation . 11
5.2 Source . 11

6 Table of content 13
6.1 Readme . 13

6.1.1 Purpose . 14
6.1.2 Installation . 14
6.1.3 Practice . 14
6.1.4 Usage . 14
6.1.5 Reference . 14

6.2 Usage . 14
6.2.1 Testing . 14
6.2.2 Linting . 15
6.2.3 Running . 15
6.2.4 Caveats . 16

6.3 Start testing your python notebooks . 17
6.3.1 TL;DR : boar helps test notebook in CI pipelines . 17
6.3.2 Uncertainty of ML projects . 18
6.3.3 Deciphering notebooks . 18
6.3.4 TDD on uncharted territory . 19
6.3.5 Crossing the gap . 20

6.4 Manual . 20
6.4.1 boar.testing . 20
6.4.2 boar.linting . 22
6.4.3 boar.running . 22

7 Index 25

Python Module Index 27

Index 29

i

ii

boar, Release 0.0.1

Dirty tricks to run python notebooks

CONTENTS 1

https://badge.fury.io/py/boar
https://github.com/alexandreCameron/boar/workflows/test/badge.svg
https://codecov.io/gh/alexandreCameron/boar
https://boar.readthedocs.io/en/latest/?badge=latest
https://mybinder.org/v2/gh/alexandreCameron/boar/master
https://opensource.org/licenses/MIT
https://img.shields.io/pypi/dm/boar
https://github.com/alexandreCameron/boar/blob/master/img/boar.jpg

boar, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

PURPOSE

Testing an idea is sometimes more easily done by calling a python notebook in a python code. It is as dirty, filthy and
ugly as a wild hairy swine with horns. . . But if you can prove the value of your idea, why not try it out immediatly
with boar.

Read more at ./POST.md

3

https://github.com/alexandreCameron/boar/blob/master/POST.md

boar, Release 0.0.1

4 Chapter 1. Purpose

CHAPTER

TWO

INSTALLATION

Requirements: Python 3 pip

The package is available on pypi: https://pypi.org/project/boar/

To install, execute:

pip install boar

5

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://pypi.org/project/boar/

boar, Release 0.0.1

6 Chapter 2. Installation

CHAPTER

THREE

PRACTICE

I used this method in CI tasks to make sure tutorials associated to a project stay up-to-date.

I would not recommend relying this trick on a long term product.

7

boar, Release 0.0.1

8 Chapter 3. Practice

CHAPTER

FOUR

USAGE

More information at ./USAGE.md.

9

https://github.com/alexandreCameron/boar/blob/master/USAGE.md

boar, Release 0.0.1

10 Chapter 4. Usage

CHAPTER

FIVE

REFERENCE

5.1 Documentation

https://boar.readthedocs.io/en/latest/

5.2 Source

https://github.com/alexandreCameron/boar

11

https://boar.readthedocs.io/en/latest/
https://github.com/alexandreCameron/boar

boar, Release 0.0.1

12 Chapter 5. Reference

CHAPTER

SIX

TABLE OF CONTENT

6.1 Readme

Dirty tricks to run python notebooks

13

https://badge.fury.io/py/boar
https://github.com/alexandreCameron/boar/workflows/test/badge.svg
https://codecov.io/gh/alexandreCameron/boar
https://boar.readthedocs.io/en/latest/?badge=latest
https://mybinder.org/v2/gh/alexandreCameron/boar/master
https://opensource.org/licenses/MIT
https://img.shields.io/pypi/dm/boar
https://github.com/alexandreCameron/boar/blob/master/img/boar.jpg

boar, Release 0.0.1

6.1.1 Purpose

Testing an idea is sometimes more easily done by calling a python notebook in a python code. It is as dirty, filthy and
ugly as a wild hairy swine with horns. . . But if you can prove the value of your idea, why not try it out immediatly
with boar.

Read more at ./POST.md

6.1.2 Installation

Requirements: Python 3 pip

The package is available on pypi: https://pypi.org/project/boar/

To install, execute:

pip install boar

6.1.3 Practice

I used this method in CI tasks to make sure tutorials associated to a project stay up-to-date.

I would not recommend relying this trick on a long term product.

6.1.4 Usage

More information at ./USAGE.md.

6.1.5 Reference

Documentation

https://boar.readthedocs.io/en/latest/

Source

https://github.com/alexandreCameron/boar

6.2 Usage

6.2.1 Testing

To test your notebook follow:

def test_assert_notebook_runs_without_error():
Given
from boar.testing import assert_notebook

When / Then
assert_notebook("my_favorite.ipynb", verbose=True)

14 Chapter 6. Table of content

https://github.com/alexandreCameron/boar/blob/master/POST.md
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://pypi.org/project/boar/
https://github.com/alexandreCameron/boar/blob/master/USAGE.md
https://boar.readthedocs.io/en/latest/
https://github.com/alexandreCameron/boar

boar, Release 0.0.1

Other examples are presented at: ./tests/test_testing_e2e.py

6.2.2 Linting

If plots are drawn in notebooks, it is not recommended to commit them to the repo. Therefore, boar considers
notebook-linting as making sure no data is saved in the notebooks. The function is designed to raise an error when
outputs have not been clear. The error will indicate the notebook and the cells at fault.

To lint a notebook (or recursively on all notebooks in a directory), use:

from boar.linting import lint_notebook
lint_notebook("my_favorite.ipynb", inline=False, verbose=True)

from boar.linting import lint_notebook
lint_notebook("my_notebook_directory", inline=False, verbose=True)

If the inline option is set to True, a linted verion of the the notebook will be saved. This version will have
outputs = [] and execution_count = NOne.

Other examples are presented at: ./notebook/02-lint-tutorial.ipynb

6.2.3 Running

Synthax

To run a notebook use:

from boar.running import run_notebook

outputs = run_notebook("my_favorite.ipynb", inputs={"a": 1}, verbose=True)

Export

The outputs are defined in the notebook by adding

• # export_line for a line

• # export_start and # export_end for a block.

Examples are presented at: ./notebook/01-test-tutorial.ipynb

Skip

Section of the notebook can be skip using the keywords:

• # skip_line for a line

• # skip_start and # skip_end for a block.

6.2. Usage 15

https://github.com/alexandreCameron/boar/blob/master/tests/test_testing_e2e.py
https://github.com/alexandreCameron/boar/blob/master/notebook/02-lint-tutorial.ipynb
https://github.com/alexandreCameron/boar/blob/master/notebook/01-io-tutorial.ipynb

boar, Release 0.0.1

Inputs

Inputs variables can be execute before the notebook using the inputs parameter of the run_notebook function.

Combined with the skip option, inputs allow run a notebook for differents parameters.

Example

If a variable in a notebook is defined as:

data_file = "my_data_file.csv" # skip_line

and an input dictionary defined as:

inputs = {"data_file": "data_file_1.csv"}

The skip option will prevent the code from executing data_file = "my_data_file.csv".

The input parameter will set data_file = "data_file_1.csv".

This is not the best way to put code in production but it can help out in some occasions.

6.2.4 Caveats

Limits

• Only the graphic package matplotlib.pyplot as been tested. Other graphic package may not give back
the hand.

• Only python code can be executed. The package will not work on julia or R notebooks.

• When executing a notebook via boar make sure the environment has all the package to run the notebook.

• The package has not been developped to work recursively. Do not execute boar on notebooks that execute boar
on other notebooks!

Forbidden synthax

Some synthax used in notebook can not be used with boar:

• Magic command starting with %%, ! or any command that cannot be used in a python file.

Use import pip ; pip.main(["install", "my-package"]), to install package within the notebook
instead of ! pip install my-package

• Variable, list, dictionary comprehension.

This synthax will **fail**
b = [a for a in range(10) if a > 3]

This synthax will **pass**
b = []
for a in range(10):

if a > 3:
b.append(a)

16 Chapter 6. Table of content

boar, Release 0.0.1

• Function calls for functions defined within the notebook scope.

This synthax will **fail**
def f2(a):

return a**2

def f2plus1(a):
return f2(a) +1

This synthax will **pass**
def f2plus1(a):

def f2(a):
return a**2

return f2(a) +1

• Package imports in the notebook scope.

This synthax will **fail**
import numpy as np

def f2plus1(a):
return np.square(a) +1

This synthax will **pass**
def f2plus1(a):

import numpy as np
return np.square(a) +1

• Use of export or skip tags in a indented section.

6.3 Start testing your python notebooks

6.3.1 TL;DR : boar helps test notebook in CI pipelines

https://github.com/alexandreCameron/boar

https://pypi.org/project/boar/

It provides functions to:

• test: check that a notebook can be executed until its last cell

• lint: check that a notebook does not have output secretly stored in a cell

• run: execute a notebook and collect the output

6.3. Start testing your python notebooks 17

https://github.com/alexandreCameron/boar
https://pypi.org/project/boar/

boar, Release 0.0.1

6.3.2 Uncertainty of ML projects

I had been working on the PoC for the end of the past sprint. I was still not sure I would get any results for this model.
I had tried different feature constructions, data splits and classifiers. Two weeks had gone by since the sprint planning.
After half a dozen stand-up meetings spent on the same task, I would have to tell Scott my boss that I was not sure the
problem could have a simple solution. Even though Scott understands agile methodology, he would not be amused.
Wait! What about this unconventional idea I had a week ago? I still had one day to throw a Hail Mary pass. A bit
discouraged by my previous failed attempts, but sill eager to try, I opened my notebook and started frenetically pouring
lines of code in the cells.

[A Hail Mary pass is a desperate last attempt long forward pass to win a US football game wikipedia]

6.3.3 Deciphering notebooks

What happens next to the model is of little importance. What is more interesting is how to handle the notebook where
“lines of codes were written frenetically”. What are the options?

• Was the idea of any interest? Should it just be deleted?

• Could it be useful? Should it be “archived”?

• Is it the start of something big? Should it be converted in a tested production-grade code?

[Disclaimer: I’m not advocating to keep dead code. Dead code should be eradicated without any remorse otherwise
zombie bugs might come to viciously haunt the project.]

There are probably other options. But, in practice, Scott will have to deliver his promise to the customer and he will
push the task until the job is done. If a task is listed on the sprint board, the cold hard truth is that the team will have
to solve the issue. In short, I will have to decipher the notebook and integrate the useful part to a production-grade
software. When this inevitably happens, my future-self will curse a lot against my past-self. My future-self will regret
not having a reproducible code on a different machine, basics tests and tutorials to document what is happening.

18 Chapter 6. Table of content

https://github.com/alexandreCameron/boar/blob/master/img/hail-mary.jpg
https://en.wikipedia.org/wiki/Hail_Mary_pass
https://github.com/alexandreCameron/boar/blob/master/img/rosetta-stone.jpg

boar, Release 0.0.1

6.3.4 TDD on uncharted territory

Some colleagues with a solid software development background may point out that best practice would suggest to use
TDD. At the heart of TDD, the feature to develop should be well defined. The specs can still have some questions
marks here and there, but the general map is clear. With the map in mind, developers can build the roads to bring users
to their objective with a value adding tool. First, the main highways are paved and then smaller roads branch out of
the highway grid.

In the case of an ML PoC, the general map does not always exist, it’s uncharted territory. Before bringing out the
asphalt paving machine, data scientists have to scout the region, identify the best areas to settle and most importantly
locate quicksands. They should also try their best to sketch existing trails that could be used in the future.

6.3. Start testing your python notebooks 19

https://github.com/alexandreCameron/boar/blob/master/img/uncharted-US.jpg

boar, Release 0.0.1

6.3.5 Crossing the gap

With the library boar now available on github and pypi, I tried to provide tools to help data scientists go from notebook
to tested code. I’m sure other developers might also find it useful. The library enables the easy integration of notebook
in CI by:

• testing : check that a notebook can be executed until its last cell

• linting : check that a notebook does not have output secretly stored in a cell

• running : execute a notebook and collect the output

At first glance, testing notebooks in CI may seem dirty, filthy and ugly as a wild hairy swine with horns. But dirty,
filthy and ugly tests are better than no test.

We may not be able to bridge the gap, but boar can help us leap over it.

6.4 Manual

6.4.1 boar.testing

boar.testing.assert_error_notebook(notebook_path: Union[str, pathlib.Path], ex-
pected_error_type: Optional[type], expected_error_msg:
Optional[str], error_label: str = 'Assertion', verbose: bool
= True)→ None

Assert that notebook raise specific error.

Parameters

• notebook_path (Union[str, Path]) – Path of notebook

• expected_error_type (Union[type, None]) – Expected error of the notebook

20 Chapter 6. Table of content

https://github.com/alexandreCameron/boar/blob/master/img/boar.jpg

boar, Release 0.0.1

• expected_error_msg (Union[str, None]) – Expected error message of the note-
book

• error_label (str, optional) – Name of the error

• verbose (bool, optional) – Option to print more information, by default False

boar.testing.assert_file(notebook_path: Union[str, pathlib.Path], error_label: str = 'Assertion',
verbose: bool = True)→ None

Check that notebook runs without error.

Parameters

• notebook_path (Union[str, Path]) – Path of notebook

• error_label (str, optional) – Name of the error

• verbose (bool, optional) – Option to print more information, by default False

boar.testing.assert_notebook(notebook_path: Union[str, pathlib.Path], error_label: str =
'Assertion', verbose: bool = True, recursion_level: int = 0,
max_recursion: Optional[int] = None)→ None

Check that notebook runs without error.

Applied on a directory, all the notebook will be lint down to the level defined by max_recursion.

Parameters

• notebook_path (Union[str, Path]) – Path of notebook

• error_label (str, optional) – Name of the error

• verbose (bool, optional) – Option to print more information, by default False

• recursion_level (int, optional) – Level of recurssion, by default 0 Set to -1000
if you wish to avoid raising Error

• max_recursion (Union[int, None], optional) – Depth of directory to ex-
plore, by default None

Returns Posix of notebook that failed

Return type List[str]

Raises BoarError – At list one notebook as failed, the message will list all failed notebooks

boar.testing.get_error_notebook(notebook_path: Union[str, pathlib.Path], verbose: bool) →
Tuple[Optional[type], Optional[str]]

Get notebook error.

Parameters

• notebook_path (Union[str, Path]) – Path of notebook

• verbose (bool, optional) – Option to print more information, by default False

Returns error_type: class of error raised error_msg: error message

Return type Tuple[Union[type, None], Union[str, None]]

6.4. Manual 21

boar, Release 0.0.1

6.4.2 boar.linting

boar.linting.lint_file(file_path: Union[str, pathlib.Path], error_label: str = 'Linting', verbose: Any
= True, inline: bool = False)→ Union[None, str]

Lints one file.

Parameters

• file_path (Union[str, Path]) – Päth of the notebook, must be file

• error_label (str, optional) – Name of the error

• verbose (Any, optional) – Verbosity optional

• inline (bool,optional) – Replace existing notebook with linted version

Returns Path in posix format if notebook fail else None

Return type Union[None, str]

Raises BoarError – Notebook is not a file or not linted.

boar.linting.lint_notebook(notebook_path: Union[str, pathlib.Path], error_label: str = 'Linting',
verbose: Any = True, inline: bool = False, recursion_level: int = 0,
max_recursion: Optional[int] = None)→ List[str]

Lint notebook.

Applied on a directory, all the notebook will be lint down to the level defined by max_recursion.

Parameters

• notebook_path (Union[str, Path]) – Notebook path or notebook directory

• error_label (str, optional) – Name of the error

• verbose (Any, optional) – Verbosity option, by default True

• inline (bool, optional) – Replace existing notebook with linted version, by default
False

• recursion_level (int, optional) – Level of recurssion, by default 0 Set to -1000
if you wish to avoid raising Error

• max_recursion (Union[int, None], optional) – Depth of directory to ex-
plore, by default None

Returns Posix of notebook that failed

Return type List[str]

Raises BoarError – At list one notebook as failed, the message will list all failed notebooks

6.4.3 boar.running

boar.running.run_notebook(notebook_path: Union[str, pathlib.Path], inputs: dict = {}, verbose:
Union[bool, object] = True, Tag: enum.EnumMeta = <enum 'Tag'>)
→ dict

Run notebook one cell and one line at a time.

Parameters

• notebook_path (Union[str, Path]) – Path of notebook

• inputs (dict, optional) – Parameter to set before launching the script, by default
{}

22 Chapter 6. Table of content

boar, Release 0.0.1

• verbose (Union[bool, object], optional) – Option to print more informa-
tion, by default False

• Tag (EnumMeta, optional) – Name of the tags, by default Tag

Returns Outputs to return if export-tags set in notebook

Return type dict

Raises

• BoarError – If export* and skip* tags in the same source

• BoarError – If *start and *line tags in the same source

6.4. Manual 23

boar, Release 0.0.1

24 Chapter 6. Table of content

CHAPTER

SEVEN

INDEX

• genindex

• modindex

• search

25

boar, Release 0.0.1

26 Chapter 7. Index

PYTHON MODULE INDEX

b
boar.linting, 22
boar.running, 22
boar.testing, 20

27

boar, Release 0.0.1

28 Python Module Index

INDEX

A
assert_error_notebook() (in module

boar.testing), 20
assert_file() (in module boar.testing), 21
assert_notebook() (in module boar.testing), 21

B
boar.linting

module, 22
boar.running

module, 22
boar.testing

module, 20

G
get_error_notebook() (in module boar.testing),

21

L
lint_file() (in module boar.linting), 22
lint_notebook() (in module boar.linting), 22

M
module

boar.linting, 22
boar.running, 22
boar.testing, 20

R
run_notebook() (in module boar.running), 22

29

	Purpose
	Installation
	Practice
	Usage
	Reference
	Documentation
	Source

	Table of content
	Readme
	Purpose
	Installation
	Practice
	Usage
	Reference

	Usage
	Testing
	Linting
	Running
	Caveats

	Start testing your python notebooks
	TL;DR : boar helps test notebook in CI pipelines
	Uncertainty of ML projects
	Deciphering notebooks
	TDD on uncharted territory
	Crossing the gap

	Manual
	boar.testing
	boar.linting
	boar.running

	Index
	Python Module Index
	Index

